Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
MRDCr
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
leg
MRDCr
Commits
a57f13f0
Commit
a57f13f0
authored
May 05, 2016
by
Walmes Marques Zeviani
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Retira as definições de funções.
parent
e0b847e4
Pipeline
#4019
failed with stage
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
34 additions
and
303 deletions
+34
-303
vignettes/v04_poisson_generelizada.Rmd
vignettes/v04_poisson_generelizada.Rmd
+34
-303
No files found.
vignettes/v04_poisson_generelizada.Rmd
View file @
a57f13f0
...
...
@@ -56,7 +56,7 @@ $$
```{r}
# Função densidade na parametrização original.
dpg0 <- function(y, theta, gamma, m = 4) {
dpg
nz
0 <- function(y, theta, gamma, m = 4) {
if (gamma < 0) {
m <- max(c(m, floor(-theta/gamma)))
if (gamma < max(c(-1, -theta/m))) {
...
...
@@ -79,10 +79,9 @@ y <- 0:30
theta <- 10
gamma <- 0
fy <- dpg0(y = y, theta = theta, gamma = gamma)
plot(fy ~ y, type = "h")
lines(y + 0.3, dpois(y, lambda = theta), type = "h", col = 2,
xlab = "y", ylab = "f(y)")
fy <- dpgnz0(y = y, theta = theta, gamma = gamma)
plot(fy ~ y, type = "h", xlab = "y", ylab = "f(y)")
lines(y + 0.3, dpois(y, lambda = theta), type = "h", col = 2)
```
## Recursos interativos com o `rpanel` ##
...
...
@@ -96,7 +95,7 @@ react <- function(panel){
from <- floor(max(c(0, m - 5 * s)))
to <- ceiling(max(c(YMAX, m + 5 * s)))
y <- from:to
py <- dpg0(y = y, theta = THETA, gamma = GAMMA)
py <- dpg
nz
0(y = y, theta = THETA, gamma = GAMMA)
if (POIS) {
pz <- dpois(y, lambda = m)
} else {
...
...
@@ -147,17 +146,7 @@ rp.do(panel = panel, action = react)
```{r, eval=FALSE}
# Função densidade na parametrização de modelo de regressão.
dpg1 <- function(y, lambda, alpha) {
k <- lfactorial(y)
w <- 1 + alpha * y
z <- 1 + alpha * lambda
m <- alpha > pmax(-1/y, -1/lambda)
# fy <- (lambda/z)^(y) * w^(y - 1) * exp(-lambda * (w/z))/exp(k)
fy <- y * (log(lambda) - log(z)) +
(y - 1) * log(w) - lambda * (w/z) - k
fy[!m] <- 0
return(m * exp(fy))
}
MRDCr::dpgnz
react <- function(panel){
with(panel,
...
...
@@ -167,7 +156,7 @@ react <- function(panel){
from <- floor(max(c(0, m - 5 * s)))
to <- ceiling(max(c(YMAX, m + 5 * s)))
y <- from:to
py <- dpg
1
(y = y, lambda = LAMBDA, alpha = ALPHA)
py <- dpg
nz
(y = y, lambda = LAMBDA, alpha = ALPHA)
if (POIS) {
pz <- dpois(y, lambda = m)
} else {
...
...
@@ -218,14 +207,9 @@ rp.do(panel = panel, action = react)
#-----------------------------------------------------------------------
# Gráfico do espaço paramétrico de theta x gamma.
# debug(dpg1)
# dpg1(y = 0:10, lambda = 1, alpha = 0)
# dpg1(y = 0:10, lambda = 1, alpha = -0.1)
# undebug(dpg1)
fun <- Vectorize(vectorize.args = c("theta", "gamma"),
FUN = function(theta, gamma) {
sum(dpg0(y = y, theta = theta, gamma = gamma))
sum(dpg
nz
0(y = y, theta = theta, gamma = gamma))
})
grid <- list(theta = seq(1, 50, by = 1),
...
...
@@ -250,7 +234,7 @@ levelplot(sum ~ theta + gamma,
fun <- Vectorize(vectorize.args = c("lambda", "alpha"),
FUN = function(lambda, alpha) {
sum(dpg
1
(y = y, lambda = lambda, alpha = alpha))
sum(dpg
nz
(y = y, lambda = lambda, alpha = alpha))
})
grid <- list(lambda = seq(0.2, 50, by = 0.2),
...
...
@@ -275,28 +259,7 @@ levelplot(sum ~ lambda + alpha,
```{r}
# Função de log-Verossimilhança da Poisson Generalizada na
# parametrização de modelo de regressão.
llpg <- function(theta, y, X, offset = NULL) {
# theta: vetor de parâmetros;
# theta[1]: parâmetro de dispersão (alpha);
# theta[-1]: parâmetro de locação (lambda);
# y: variável resposta (contagem);
# X: matriz do modelo linear;
# offset: tamanho do domínio onde y foi medido;
#----------------------------------------
if (is.null(offset)) {
offset <- 1L
}
lambda <- offset * exp(X %*% theta[-1])
alpha <- theta[1]
w <- 1 + alpha * y
z <- 1 + alpha * lambda
fy <- y * (log(lambda) - log(z)) +
(y - 1) * log(w) -
lambda * (w/z) -
lfactorial(y)
# Negativo da log-likelihood.
-sum(fy)
}
MRDCr::llpgnz
#-----------------------------------------------------------------------
# Gerando uma amostra aleatória da Poisson.
...
...
@@ -309,10 +272,10 @@ L <- list(y = y,
X = cbind(rep(1, length(y))))
start <- c(alpha = 0, lambda = 1)
parnames(llpg) <- names(start)
parnames(llpg
nz
) <- names(start)
# Como \alpha foi fixado em 1, essa ll corresponde à Poisson.
n0 <- mle2(minuslogl = llpg,
n0 <- mle2(minuslogl = llpg
nz
,
start = start, data = L,
fixed = list(alpha = 0), vecpar = TRUE)
...
...
@@ -321,7 +284,7 @@ c(coef(n0)["lambda"],
coef(glm(y ~ offset(log(L$offset)), family = poisson)))
# Estimando o \alpha.
n1 <- mle2(llpg, start = start, data = L, vecpar = TRUE)
n1 <- mle2(llpg
nz
, start = start, data = L, vecpar = TRUE)
coef(n1)
# Perfil de verossimilhança dos parâmetros.
...
...
@@ -342,8 +305,6 @@ nesse experimento foram o número de vagens viáveis (e não viáveis) e o
número total de sementes por parcela.
```{r}
library(lattice)
data(soja, package = "MRDCr")
str(soja)
...
...
@@ -376,10 +337,10 @@ L <- with(soja, list(y = nvag, offset = 1, X = model.matrix(m0)))
# Usa as estimativas do Poisson como valore iniciais.
start <- c(alpha = 0, coef(m0))
parnames(llpg) <- names(start)
parnames(llpg
nz
) <- names(start)
# Com alpha fixo em 0 corresponde à Poisson.
m2 <- mle2(llpg, start = start, data = L,
m2 <- mle2(llpg
nz
, start = start, data = L,
fixed = list(alpha = 0), vecpar = TRUE)
# Mesma medida de ajuste e estimativas.
...
...
@@ -387,7 +348,7 @@ c(logLik(m2), logLik(m0))
cbind(coef(m2)[-1], coef(m0))
# Poisson Generalizada.
m3 <- mle2(llpg, start = start, data = L, vecpar = TRUE)
m3 <- mle2(llpg
nz
, start = start, data = L, vecpar = TRUE)
# Teste para nulinidade do parâmetro de dispersão (H_0: alpha == 0).
anova(m3, m2)
...
...
@@ -517,17 +478,17 @@ L <- with(soja, list(y = ngra, offset = 1, X = model.matrix(m0)))
# Usa as estimativas do Poisson como valore iniciais.
start <- c(alpha = 0, coef(m0))
parnames(llpg) <- names(start)
parnames(llpg
nz
) <- names(start)
# Com alpha fixo em 0 corresponde à Poisson.
m2 <- mle2(llpg, start = start, data = L,
m2 <- mle2(llpg
nz
, start = start, data = L,
fixed = list(alpha = 0), vecpar = TRUE)
# Mesma medida de ajuste e estimativas.
c(logLik(m2), logLik(m0))
# Poisson Generalizada.
m3 <- mle2(llpg, start = start, data = L, vecpar = TRUE)
m3 <- mle2(llpg
nz
, start = start, data = L, vecpar = TRUE)
# Teste para nulinidade do parâmetro de dispersão (H_0: alpha == 0).
anova(m3, m2)
...
...
@@ -657,17 +618,17 @@ L <- with(soja, list(y = ngra, offset = nvag, X = model.matrix(m0)))
# perfilhar encontra um mínimo melhor. Então, por tentativa erro
# chegou-se no -0.0026.
start <- c(alpha = -0.0026, coef(m0))
parnames(llpg) <- names(start)
parnames(llpg
nz
) <- names(start)
# Com alpha fixo em 0 corresponde à Poisson.
m2 <- mle2(llpg, start = start, data = L,
m2 <- mle2(llpg
nz
, start = start, data = L,
fixed = list(alpha = 0), vecpar = TRUE)
# Mesma medida de ajuste e estimativas.
c(logLik(m2), logLik(m0))
# Poisson Generalizada.
m3 <- mle2(llpg, start = start, data = L, vecpar = TRUE)
m3 <- mle2(llpg
nz
, start = start, data = L, vecpar = TRUE)
# Teste para nulinidade do parâmetro de dispersão (H_0: alpha == 0).
anova(m3, m2)
...
...
@@ -741,16 +702,16 @@ summary(m0)
L <- with(capdesfo, list(y = ncap, offset = 1, X = model.matrix(m0)))
start <- c(alpha = log(1), coef(m0))
parnames(llpg) <- names(start)
parnames(llpg
nz
) <- names(start)
# Modelo Poisson também.
m2 <- mle2(llpg, start = start, data = L,
m2 <- mle2(llpg
nz
, start = start, data = L,
fixed = list(alpha = 0), vecpar = TRUE)
c(logLik(m2), logLik(m0))
# Modelo Poisson Generalizado.
m3 <- mle2(llpg, start = start, data = L, vecpar = TRUE)
m3 <- mle2(llpg
nz
, start = start, data = L, vecpar = TRUE)
logLik(m3)
anova(m3, m2)
...
...
@@ -848,249 +809,19 @@ update(p1, type = "p", layout = c(NA, 1),
as.layer(p2, under = TRUE)
```
## Mosca Branca ##
```{r}
data(ninfas, package = "MRDCr")
str(ninfas)
# Somente as cultivares que contém BRS na identificação
ninfas <- droplevels(subset(ninfas,
grepl("BRS.*RR", x = cult) & dias <= 22))
ninfas$y <- ninfas$ntot
str(ninfas)
xyplot(y ~ dias | cult, data = ninfas,
type = c("p", "spline"),
grid = TRUE, as.table = TRUE, layout = c(NA, 2),
xlab = "Dias", ylab = "Número total de ninfas")
ninfas <- transform(ninfas, aval = factor(dias))
#-----------------------------------------------------------------------
# Modelo Poisson.
m0 <- glm(y ~ bloco + cult + aval,
data = ninfas, family = poisson)
par(mfrow = c(2, 2))
plot(m0); layout(1)
anova(m0, test = "Chisq")
summary(m0)
#-----------------------------------------------------------------------
# Modelo Poisson Generalizada.
L <- with(ninfas, list(y = y, offset = 1, X = model.matrix(m0)))
start <- c(alpha = 0, coef(m0))
parnames(llpg) <- names(start)
# Modelo Poisson também.
m2 <- mle2(llpg, start = start, data = L,
fixed = list(alpha = 0), vecpar = TRUE)
c(logLik(m2), logLik(m0))
# Modelo Poisson Generalizado.
m3 <- mle2(llpg, start = start, data = L, vecpar = TRUE)
logLik(m3)
anova(m3, m2)
summary(m3)
plot(profile(m3, which = "alpha"))
cbind("PoissonGLM" = c(NA, coef(m0)),
"PoissonML" = coef(m2),
"PGeneraliz" = coef(m3))
V <- cov2cor(vcov(m3))
corrplot.mixed(V, upper = "ellipse", col = "gray50")
dev.off()
# Tamanho das covariâncias com \alpha.
each(sum, mean, max)(abs(V[1, -1]))
# Teste de Wald para a interação.
a <- c(0, attr(model.matrix(m0), "assign"))
ai <- a == max(a)
L <- t(replicate(sum(ai), rbind(coef(m3) * 0), simplify = "matrix"))
L[, ai] <- diag(sum(ai))
# Teste de Wald explicito.
crossprod(L %*% coef(m3),
solve(L %*% vcov(m3) %*% t(L),
L %*% coef(m3)))
# Teste de Wald para interação (poderia ser LRT, claro).
# É necessário um objeto glm, mas necesse caso ele não usado para nada.
linearHypothesis(model = m0,
hypothesis.matrix = L,
vcov. = vcov(m3),
coef. = coef(m3))
#-----------------------------------------------------------------------
# Predição com bandas de confiança.
pred <- with(ninfas, expand.grid(bloco = factor(levels(bloco)[1],
levels = levels(bloco)),
cult = levels(cult),
aval = levels(aval),
KEEP.OUT.ATTRS = FALSE))
X <- model.matrix(formula(m0)[-2], data = pred)
bl <- attr(X, "assign") == 1
X[, bl] <- X[, bl] * 0 + 1/(sum(bl) + 1)
head(X)
pred <- list(pois = pred, pgen = pred)
# Quantil normal.
qn <- qnorm(0.975) * c(lwr = -1, fit = 0, upr = 1)
# Preditos pela Poisson.
aux <- confint(glht(m0, linfct = X),
calpha = univariate_calpha())$confint
colnames(aux)[1] <- "fit"
pred$pois <- cbind(pred$pois, exp(aux))
str(pred$pois)
# Matrix de covariância completa e sem o alpha.
V <- vcov(m3)
V <- V[-1, -1]
U <- chol(V)
aux <- sqrt(apply(X %*% t(U), MARGIN = 1,
FUN = function(x) { sum(x^2) }))
pred$pgen$eta <- c(X %*% coef(m3)[-1])
pred$pgen <- cbind(pred$pgen,
apply(outer(aux, qn, FUN = "*"), MARGIN = 2,
FUN = function(x) {
exp(pred$pgen$eta + x)
}))
str(pred$pgen)
pred <- ldply(pred, .id = "modelo")
pred <- arrange(pred, cult, aval, modelo)
str(pred)
key <- list(lines = list(
lty = 1,
col = trellis.par.get("superpose.line")$col[1:2]),
text = list(
c("Poisson", "Poisson Generalizada")))
xyplot(y ~ aval | cult, data = ninfas,
grid = TRUE, as.table = TRUE, layout = c(NA, 2),
xlab = "Dias", ylab = "Número total de ninfas",
key = key) +
as.layer(xyplot(fit ~ aval | cult, data = pred,
groups = modelo, pch = 19, type = "o",
ly = pred$lwr, uy = pred$upr,
cty = "bars", length = 0.05,
desloc = 0.2 * scale(as.integer(pred$modelo),
scale = FALSE),
prepanel = prepanel.cbH,
panel.groups = panel.cbH,
panel = panel.superpose), under = TRUE)
#-----------------------------------------------------------------------
fun <- Vectorize(vectorize.args = c("lambda", "alpha"),
FUN = function(lambda, alpha) {
sum(dpg1(y = y, lambda = lambda, alpha = alpha))
})
# dpg1(y = 0:10, lambda = 5, alpha = -0)
# dpois(0:10, lambda = 5)
head(sort(subset(pred, modelo = "pois")$fit, decreasing = TRUE))
coef(m3)["alpha"]
y <- 0:400
grid <- list(lambda = seq(10, 200, by = 2),
alpha = seq(-0.05, 0.1, by = 0.001))
grid$sum <- with(grid, outer(lambda, alpha, fun))
funcur
y <- 0:800
py <- dpg1(y = y, lambda = 190, alpha = 0.05)
plot(py ~ y, type = "h")
abline(v = 190)
grid <- with(grid,
cbind(expand.grid(lambda = lambda, alpha = alpha),
data.frame(sum = c(sum))))
levelplot(sum ~ lambda + alpha,
data = subset(grid, round(sum, 3) == 1),
col.regions = gray.colors) +
layer(panel.abline(h = 0.05))
```
```{r}
funcur <- function(lambda, alpha, n = 10) {
m <- lambda
s <- sqrt(lambda) * (1 + alpha * lambda)
sy <- seq(max(c(0, m - 4 * s)),
ceiling(m + 4 * s),
length.out = n)
sy <- round(sy, 0)
fy <- dpg1(y = sy, lambda = lambda, alpha = alpha)
fy <- 0.8 * fy/max(fy)
return(cbind(lambda = lambda, alpha = alpha, y = sy, fy = fy))
}
den <- subset(pred, modelo == "pgen")
L <- lapply(den$fit, FUN = funcur, alpha = 0.05, n = 50)
for (i in seq_along(L)) {
L[[i]] <- cbind(den[i, ], L[[i]])
# L[[i]]$fy <- 0.75 * L[[i]]$fy/max(L[[i]]$fy)
}
L <- do.call(rbind, L)
xyplot(y ~ aval | cult, data = L,
py = L$fy, type = "l", groups = aval, col = 1,
panel = function(x, y, subscripts, py, ...) {
panel.xyplot(x = as.integer(x) + py[subscripts],
y = y,
subscripts = subscripts, ...)
}) +
as.layer(xyplot(ntot ~ aval | cult, data = ninfas)) +
as.layer(xyplot(fit ~ aval | cult, data = pred,
groups = modelo, pch = 19, type = "o",
ly = pred$lwr, uy = pred$upr,
cty = "bars", length = 0.05,
desloc = 0.2 * scale(as.integer(pred$modelo),
scale = FALSE),
prepanel = prepanel.cbH,
panel.groups = panel.cbH,
panel = panel.superpose), under = TRUE)
# Teria que estimar uma variância para cada avaliação.
```
## Pacote VGAM ##
```{r, eval=FALSE}
#-----------------------------------------------------------------------
#
#
http://finzi.psych.upenn.edu/library/VGAM/html/genpoisson.html
#
library(VGAM)
#
# formula(m0)
# m1 <- vglm(formula(m0), data = cap
, family = genpoisson, trace = TRUE)
#
coef(m1, matrix = TRUE)
#
summary(m1)
#
# logLik(m2
)
# http://finzi.psych.upenn.edu/library/VGAM/html/genpoisson.html
library(VGAM)
m1 <- vglm(ncap ~ est * (des + I(des^2)),
data = capdesfo
, family = genpoisson, trace = TRUE)
coef(m1, matrix = TRUE)
summary(m1)
logLik(m1
)
```
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment