diff --git a/script/analysis/course_analysis.py b/script/analysis/course_analysis.py index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..2c994c34c3fa7b9fd108abb6ea5881906c52a849 100644 --- a/script/analysis/course_analysis.py +++ b/script/analysis/course_analysis.py @@ -0,0 +1,48 @@ +# -*- coding: utf-8 -*- + +import pandas as pd +import numpy as np + +def print_analise(d): + with pd.option_context('display.max_rows', None, 'display.max_columns', 27): + print(d) +def analise(df): + c = df.groupby(['COD_ATIV_CURRIC']).size() + diciplinas = df.groupby(['COD_ATIV_CURRIC','SIGLA']).size().reset_index(name='counts') + i=diciplinas.groupby(['COD_ATIV_CURRIC','SIGLA']).apply(lambda x: x['counts'] / (c[x['COD_ATIV_CURRIC']].values[0])).reset_index(name='taxas') + print_analise(i) +analise(df) + + + + + + + + + + + + + + + + + + + + +# +##f = lambda x: x / c[x] +## p = df.groupby(['COD_ATIV_CURRIC','SIGLA']).size().apply(lambda x: (x /c['CI055'])*100) +#k = (df.sort(['ANO','PERIODO'])) +##(p.apply(lambda x: print(p['COD_ATIV_CURRIC']))) +# +## # .size().reset_index(name = "count"); +## # c = p.groupby(['count','SIGLA']).size() +## ''' percorre mais uma vez a serie para aplicar a funcao lambida, se a ''' +## c = lambda x: x+1 +## curses = df['COD_ATIV_CURRIC'].drop_duplicates() +## 'MATR_ALUNO',' +#p +#df = pd.read_excel("../base/historico.xls")