diff --git a/script/base/dataframe_base.py b/script/base/dataframe_base.py
index 4c0113ebc1846b899c68ff6b68ca52cf036f9b9e..bd4aa0459af0998e1bbe0da3e08c78731534f67f 100644
--- a/script/base/dataframe_base.py
+++ b/script/base/dataframe_base.py
@@ -10,125 +10,110 @@ from utils.situations import *
 
 
 class DataframeHolder:
-	def __init__(self, dataframe):
-		self.students = dataframe.groupby('MATR_ALUNO')
-		self.courses = dataframe.groupby('COD_ATIV_CURRIC')
-		self.admission = dataframe.groupby(['ANO_INGRESSO', 'SEMESTRE_INGRESSO'])
+        def __init__(self, dataframe):
+                self.students = dataframe.groupby('MATR_ALUNO')
+                self.courses = dataframe.groupby('COD_ATIV_CURRIC')
+                self.admission = dataframe.groupby(['ANO_INGRESSO', 'SEMESTRE_INGRESSO'])
 
 
 def load_dataframes(cwd='.'):
-	dataframes = []
-	for path, dirs, files in os.walk(cwd):	   
-		for f in files:
-			file_path = path + '/' + f
-			dh = {'name': f, 'dataframe': None}
-			if 'csv' in f:
-				dh['dataframe'] = read_csv(file_path)
-			if 'xls' in f:
-				dh['dataframe'] = read_excel(file_path)
-
-			if dh['dataframe'] is not None:
-				dataframes.append(dh)
-
-	dataframe = fix_dataframes(dataframes)
-	dh = DataframeHolder(dataframe)
-	#~ dh.students.aggregate(teste)
-#	print(dh.students['MEDIA_FINAL'].aggregate(teste))
-	return dataframe
+        dataframes = []
+        for path, dirs, files in os.walk(cwd):
+                for f in files:
+                        file_path = path + '/' + f
+                        dh = {'name': f, 'dataframe': None}
+                        if 'csv' in f:
+                                dh['dataframe'] = read_csv(file_path)
+                        if 'xls' in f:
+                                dh['dataframe'] = read_excel(file_path)
+
+                        if dh['dataframe'] is not None:
+                                dataframes.append(dh)
+
+        dataframe = fix_dataframes(dataframes)
+        dh = DataframeHolder(dataframe)
+        #~ dh.students.aggregate(teste)
+#       print(dh.students['MEDIA_FINAL'].aggregate(teste))
+        return dataframe
 
 
 def read_excel(path, planilha='Planilha1'):
-	return pd.read_excel(path)
+        return pd.read_excel(path)
 
 
 def read_csv(path):
-	return pd.read_csv(path)
+        return pd.read_csv(path)
 
 
 def fix_dataframes(dataframes):
-	for df in dataframes:
-		if df['name'] == 'historico.xls' or df['name'] == 'historico.csv':
-			history = df['dataframe']
-			history.rename(columns={'DESCR_SITUACAO': 'SITUACAO'}, inplace=True)
-		if df['name'] == 'matricula.xls'  or df['name'] == 'matricula.csv':
-			register = df['dataframe']
-
-	#~ clean_history(history)
-	clean_register(register)
-	#~ df.dropna(axis=0, how='all')
-	history["MEDIA_FINAL"] = pd.to_numeric(history["MEDIA_FINAL"], errors='coerce')
-	history = history[np.isfinite(history['MEDIA_FINAL'])]
-	
-	
-	merged = pd.merge(history, register, how='outer', on=['MATR_ALUNO'])
-	merged = merged.rename(index=str, columns={"ANO_INGRESSO_x": "ANO_INGRESSO", "SEMESTRE_INGRESSO_x": "SEMESTRE_INGRESSO", "FORMA_INGRESSO_x": "FORMA_INGRESSO"})
-	
-	fix_situation(merged)
-	fix_admission(merged)
-	fix_evasion(merged)
-	fix_carga(merged)
-
-	
-	return merged
+        for df in dataframes:
+                if df['name'] == 'historico.xls' or df['name'] == 'historico.csv':
+                        history = df['dataframe']
+                        history.rename(columns={'DESCR_SITUACAO': 'SITUACAO'}, inplace=True)
+                if df['name'] == 'matricula.xls'  or df['name'] == 'matricula.csv':
+                        register = df['dataframe']
+
+        #~ clean_history(history)
+        clean_register(register)
+        #~ df.dropna(axis=0, how='all')
+        history["MEDIA_FINAL"] = pd.to_numeric(history["MEDIA_FINAL"], errors='coerce')
+        history = history[np.isfinite(history['MEDIA_FINAL'])]
+
+
+        merged = pd.merge(history, register, how='outer', on=['MATR_ALUNO'])
+        merged = merged.rename(index=str, columns={"ANO_INGRESSO_x": "ANO_INGRESSO", "SEMESTRE_INGRESSO_x": "SEMESTRE_INGRESSO", "FORMA_INGRESSO_x": "FORMA_INGRESSO"})
+
+        fix_situation(merged)
+        fix_admission(merged)
+        fix_evasion(merged)
+        fix_carga(merged)
+
+
+        return merged
 
 
 def clean_history(df):
-<<<<<<< HEAD
-	df.drop(['ID_NOTA', 'CONCEITO', 'ID_LOCAL_DISPENSA', 'SITUACAO_CURRICULO',
-			 'ID_CURSO_ALUNO', 'ID_VERSAO_CURSO', 'ID_CURRIC_ALUNO',
-			 'ID_ATIV_CURRIC', 'SITUACAO_ITEM', 'ID_ESTRUTURA_CUR'
-			], axis=1, inplace=True)
-	df['PERIODO'] = df['PERIODO'].str.split('o').str[0]
-=======
     df.drop(['ID_NOTA', 'CONCEITO', 'ID_LOCAL_DISPENSA', 'SITUACAO_CURRICULO',
              'ID_CURSO_ALUNO', 'ID_VERSAO_CURSO', 'ID_CURRIC_ALUNO',
              'ID_ATIV_CURRIC', 'SITUACAO_ITEM', 'ID_ESTRUTURA_CUR', 'NUM_VERSAO'
             ], axis=1, inplace=True)
     df['PERIODO'] = df['PERIODO'].str.split('o').str[0]
->>>>>>> origin/degree
 
 def clean_register(df):
-	df_split = df['PERIODO_INGRESSO'].str.split('/')
-	df['ANO_INGRESSO'] = df_split.str[0]
-	df['SEMESTRE_INGRESSO'] = df_split.str[1].str.split('o').str[0]
-	df_split = df['PERIODO_EVASAO'].str.split('/')
-	df['ANO_EVASAO'] = df_split.str[0]
-	df['SEMESTRE_EVASAO'] = df_split.str[1].str.split('o').str[0]
-
-<<<<<<< HEAD
-	df.drop(['ID_PESSOA', 'NOME_PESSOA', 'DT_NASCIMENTO', 'NOME_UNIDADE',
-			 'COD_CURSO', 'NUM_VERSAO', 'PERIODO_INGRESSO', 'PERIODO_EVASAO',
-			],axis=1, inplace=True)
-=======
-    df.drop(['ID_PESSOA', 'NOME_PESSOA', 'DT_NASCIMENTO', 'NOME_UNIDADE',
-             'COD_CURSO', 'PERIODO_INGRESSO', 'PERIODO_EVASAO',
-            ],axis=1, inplace=True)
->>>>>>> origin/degree
+        df_split = df['PERIODO_INGRESSO'].str.split('/')
+        df['ANO_INGRESSO'] = df_split.str[0]
+        df['SEMESTRE_INGRESSO'] = df_split.str[1].str.split('o').str[0]
+        df_split = df['PERIODO_EVASAO'].str.split('/')
+        df['ANO_EVASAO'] = df_split.str[0]
+        df['SEMESTRE_EVASAO'] = df_split.str[1].str.split('o').str[0]
+
+
+        df.drop(['ID_PESSOA', 'NOME_PESSOA', 'DT_NASCIMENTO', 'NOME_UNIDADE','COD_CURSO', 'PERIODO_INGRESSO', 'PERIODO_EVASAO'],axis=1, inplace=True)
 
 
 def fix_situation(df):
-	for situation in Situation.SITUATIONS:
-		df.loc[df.SITUACAO == situation[1], 'SITUACAO'] = situation[0]
+        for situation in Situation.SITUATIONS:
+                df.loc[df.SITUACAO == situation[1], 'SITUACAO'] = situation[0]
 
 
 def fix_admission(df):
-	for adm in AdmissionType.ADMISSION_FORM:
-		df.loc[df.FORMA_INGRESSO == adm[1], 'FORMA_INGRESSO'] = adm[0]
+        for adm in AdmissionType.ADMISSION_FORM:
+                df.loc[df.FORMA_INGRESSO == adm[1], 'FORMA_INGRESSO'] = adm[0]
 
 
 def fix_carga(df):
-	df["CH_TOTAL"] = df["CH_TEORICA"]+df["CH_PRATICA"]
-		
+        df["CH_TOTAL"] = df["CH_TEORICA"]+df["CH_PRATICA"]
+
 def fix_evasion(df):
-	evasionForms = [x[1] for x in EvasionForm.EVASION_FORM]
-	df.loc[~df.FORMA_EVASAO.isin(evasionForms), 'FORMA_EVASAO'] = 100
-	for evasion in EvasionForm.EVASION_FORM:
-		#~ df.loc[df.FORMA_EVASAO.str.contains(evasion[1]).fillna(1.0), 'FORMA_EVASAO'] = evasion[0]
-		df.loc[df.FORMA_EVASAO == evasion[1], 'FORMA_EVASAO'] = evasion[0]
-
-		#~ if(evasion[0] == 100):
-			#~ for x in df.FORMA_EVASAO.str.contains(evasion[1]).fillna(False):
-				#~ if(x != 0.0):
-					#~ print(x)
-	#~ print(df.FORMA_EVASAO.str.contains(evasion[1]).fillna(5))
-	#~ print(df[['MATR_ALUNO','FORMA_EVASAO']])
+        evasionForms = [x[1] for x in EvasionForm.EVASION_FORM]
+        df.loc[~df.FORMA_EVASAO.isin(evasionForms), 'FORMA_EVASAO'] = 100
+        for evasion in EvasionForm.EVASION_FORM:
+                #~ df.loc[df.FORMA_EVASAO.str.contains(evasion[1]).fillna(1.0), 'FORMA_EVASAO'] = evasion[0]
+                df.loc[df.FORMA_EVASAO == evasion[1], 'FORMA_EVASAO'] = evasion[0]
+
+                #~ if(evasion[0] == 100):
+                        #~ for x in df.FORMA_EVASAO.str.contains(evasion[1]).fillna(False):
+                                #~ if(x != 0.0):
+                                        #~ print(x)
+        #~ print(df.FORMA_EVASAO.str.contains(evasion[1]).fillna(5))
+        #~ print(df[['MATR_ALUNO','FORMA_EVASAO']])
diff --git a/script/main.py b/script/main.py
index 4000d54e67cdf2ec3be08a4f8a9150a5c0539ea0..150dbcd6b479e0d04560a97f9d379b264d095300 100644
--- a/script/main.py
+++ b/script/main.py
@@ -3,15 +3,9 @@ import time
 from base.dataframe_base import load_dataframes
 from build_cache import build_cache
 from datetime import timedelta
-<<<<<<< HEAD
 from analysis.degree_analysis import *
-
-
-
-=======
 from utils.situations import *
 from analysis.course_analysis import *
->>>>>>> origin/course
 def main():
     start_time = time.clock()
     start_time_exec = time.time()
@@ -19,7 +13,7 @@ def main():
     dataframe = load_dataframes(os.getcwd() + '/' + 'base')
     build_cache(dataframe)
     cpu_time = timedelta(seconds=round(time.clock() - start_time))
-    Main(dataframe)
+    analises_disciplinas(dataframe)
     run_time = timedelta(seconds=round(time.time() - start_time_exec))
     print("--- Tempo de CPU: {} ---".format(cpu_time))
     print("--- Tempo total: {} ---".format(run_time))