diff --git a/Pipfile b/Pipfile
index 0a2040c890c377b2d72eb488a4178d5d19af3aa4..a71efcf8e3575ce0378264f3106c08c8a011fd90 100644
--- a/Pipfile
+++ b/Pipfile
@@ -15,7 +15,7 @@ ipython = "*"
 
 django = "==1.11.10"
 django-widget-tweaks = "*"
-pandas = "==0.18.1"
+pandas = "==0.22"
 "psycopg2" = "*"
 xlrd = "*"
 django-extensions = "*"
diff --git a/Pipfile.lock b/Pipfile.lock
index 7a905e16f578418a109aed7fdf34b5a572cbb6b9..8356c5a86d8ac8fb955998dd87fc8fe33a9f8baa 100644
--- a/Pipfile.lock
+++ b/Pipfile.lock
@@ -1,7 +1,7 @@
 {
     "_meta": {
         "hash": {
-            "sha256": "0b62cd0d5cd72fee71fa1f56dde87cabb220300bca052e3c9006ba8da5edeca6"
+            "sha256": "36924d8179f463a93a6998ff08f3840a6e3125ae52f0dbf7a2a82a3563d8e337"
         },
         "host-environment-markers": {
             "implementation_name": "cpython",
@@ -36,10 +36,10 @@
         },
         "django-extensions": {
             "hashes": [
-                "sha256:24c24bbc6ef6dd36fe6b2b7c48d171a9d22fe76895610fe19087af657fa27930",
-                "sha256:1f424a7f87974c2e2602b8b41cae52eb08105523f0c70320203abf58bcb84404"
+                "sha256:37a543af370ee3b0721ff50442d33c357dd083e6ea06c5b94a199283b6f9e361",
+                "sha256:bc9f2946c117bb2f49e5e0633eba783787790ae810ea112fe7fd82fa64de2ff1"
             ],
-            "version": "==2.0.5"
+            "version": "==2.0.6"
         },
         "django-widget-tweaks": {
             "hashes": [
@@ -77,26 +77,8 @@
             "version": "==1.14.2"
         },
         "pandas": {
-            "hashes": [
-                "sha256:2aeebd55027eb1fcb5020ec141696be47fff65fb86c276e46bae42f04b3bfeaf",
-                "sha256:6f31b4510da92f8beec17fe9ecb3f386984a4b35e1d1dee062b3463f63e70bbc",
-                "sha256:b7a6ce196452bf9a020074b68c184b174c12a22c285603ceebb09c645cf001d1",
-                "sha256:42c933501341263194926d00c1039d314039f6fbe763e13d983918d273a0ad68",
-                "sha256:aa50475fafbc689dead2e9a4e98b96fc43f1190f6661d1daf560f8c05ac26496",
-                "sha256:9984b284ab6d7672c720ea960f4d19b9dd0bea061c2ccd641b0c20d34ce03f7a",
-                "sha256:a0af231d6bf20d3f94a4d694bb3cd26c1b330aa4ed124ea99eff49a583ed10ff",
-                "sha256:9b1a7834e10c5a2afacaae8ba10054dc2ee5ae81eeaecf44d9eaa4d726962817",
-                "sha256:6621db235422aa48d7513a7f332a7bfc6e9a54b0283bac145cccec7c4c0ccd7d",
-                "sha256:c39dbc38bc031f099bcfa408a93c801f0141ee49a7d4e0df09cdf9dcf01f27e6",
-                "sha256:fccbc771a23d51b366182c136cd735cf1642744270fee964f5b1fe9103d66239",
-                "sha256:80bf0d32432fe588a0e94ff6b216aa5c61ddba2348ca904bda240218f9cbe122",
-                "sha256:931d25b391eb01c52239a41e2b1c29c8337a6789852ecc0d4ce39ce2491424e6",
-                "sha256:563720b6302a4e2b513471c16bd7e89db2ae44d3f6b0745896b9c289f3c6b2fb",
-                "sha256:c850d8c41b5417ba361967d3e2b6119c681b9f0bd5eb77f4c013c46dbf0ebe95",
-                "sha256:d2e483692c7915916dffd1b83256ea9761b4224c8d45646ceddf48b977ee77b2",
-                "sha256:de8661d3a71bac8b5100c2a85fdb1b55c9b41534aba7a9671d1130d43ab2de59"
-            ],
-            "version": "==0.18.1"
+            "hashes": [],
+            "version": "==0.22"
         },
         "psycopg2": {
             "hashes": [
diff --git a/src/script/base/dataframe_base.py b/src/script/base/dataframe_base.py
index 7097a4f38c77c77d83832aebae06d1e7d5d5dfcc..048a9f549f71248e0ec470fc957fd3ba935dcafc 100644
--- a/src/script/base/dataframe_base.py
+++ b/src/script/base/dataframe_base.py
@@ -3,112 +3,134 @@ import os
 import pandas as pd
 import numpy as np
 from script.utils.situations import *
+from script.utils.utils import invert_dict
 
 
 class DataframeHolder:
-        def __init__(self, dataframe):
-                self.students = dataframe.groupby('MATR_ALUNO')
-                self.courses = dataframe.groupby('COD_ATIV_CURRIC')
-                self.admission = dataframe.groupby(['ANO_INGRESSO', 'SEMESTRE_INGRESSO'])
+    def __init__(self, dataframe):
+        self.students = dataframe.groupby('MATR_ALUNO')
+        self.courses = dataframe.groupby('COD_ATIV_CURRIC')
+        self.admission = dataframe.groupby(['ANO_INGRESSO', 'SEMESTRE_INGRESSO'])
 
 
 def load_dataframes(cwd='.'):
-        dataframes = []
-        for path, dirs, files in os.walk(cwd):
-                for f in files:
-                        file_path = path + '/' + f
-                        dh = {'name': f, 'dataframe': None}
-                        if 'csv' in f:
-                                dh['dataframe'] = read_csv(file_path)
-                        if 'xls' in f:
-                                dh['dataframe'] = read_excel(file_path)
-
-                        if dh['dataframe'] is not None:
-                                dataframes.append(dh)
-
-        dataframe = fix_dataframes(dataframes)
-        dh = DataframeHolder(dataframe)
-        #~ dh.students.aggregate(teste)
+    dataframes = []
+    for path, dirs, files in os.walk(cwd):
+        for f in files:
+            file_path = path + '/' + f
+            dh = {'name': f, 'dataframe': None}
+            if 'csv' in f:
+                dh['dataframe'] = read_csv(file_path)
+            if 'xls' in f:
+                dh['dataframe'] = read_excel(file_path)
+
+            if dh['dataframe'] is not None:
+                dataframes.append(dh)
+
+    dataframe = fix_dataframes(dataframes)
+    dh = DataframeHolder(dataframe)
+    #~ dh.students.aggregate(teste)
 #       print(dh.students['MEDIA_FINAL'].aggregate(teste))
-        return dataframe
+    return dataframe
 
 
 def read_excel(path, planilha='Planilha1'):
-        return pd.read_excel(path)
+    return pd.read_excel(path)
 
 
 def read_csv(path):
-        return pd.read_csv(path)
+    return pd.read_csv(path)
 
 
 def fix_dataframes(dataframes):
-        for df in dataframes:
-                if df['name'] == 'historico.xls' or df['name'] == 'historico.csv':
-                        history = df['dataframe']
-                        history.rename(columns={'DESCR_SITUACAO': 'SITUACAO'}, inplace=True)
-                if df['name'] == 'matricula.xls'  or df['name'] == 'matricula.csv':
-                        register = df['dataframe']
+    for df in dataframes:
+        if df['name'] == 'historico.xls' or df['name'] == 'historico.csv':
+            history = df['dataframe']
+            history.rename(columns={'DESCR_SITUACAO': 'SITUACAO'}, inplace=True)
+        if df['name'] == 'matricula.xls' or df['name'] == 'matricula.csv':
+            register = df['dataframe']
 
-        #~ clean_history(history)
-        clean_register(register)
-        #~ df.dropna(axis=0, how='all')
-        history["MEDIA_FINAL"] = pd.to_numeric(history["MEDIA_FINAL"], errors='coerce')
-        history = history[np.isfinite(history['MEDIA_FINAL'])]
+    #~ clean_history(history)
+    clean_register(register)
+    #~ df.dropna(axis=0, how='all')
+    history["MEDIA_FINAL"] = pd.to_numeric(history["MEDIA_FINAL"], errors='coerce')
+    history = history[np.isfinite(history['MEDIA_FINAL'])]
 
+    # inner = exste nos dois relatórios, é o que a gente quer
+    # o que fazer com quem não está em um dos dois é um questão em aberto
+    merged = pd.merge(history, register, how='inner', on=['MATR_ALUNO'])
+    merged = merged.rename(index=str, columns={"ANO_INGRESSO_x": "ANO_INGRESSO", "SEMESTRE_INGRESSO_x": "SEMESTRE_INGRESSO", "FORMA_INGRESSO_x": "FORMA_INGRESSO"})
 
-        merged = pd.merge(history, register, how='outer', on=['MATR_ALUNO'])
-        merged = merged.rename(index=str, columns={"ANO_INGRESSO_x": "ANO_INGRESSO", "SEMESTRE_INGRESSO_x": "SEMESTRE_INGRESSO", "FORMA_INGRESSO_x": "FORMA_INGRESSO"})
+    fix_situation(merged)
+    fix_admission(merged)
+    fix_evasion(merged)
+    fix_carga(merged)
 
-        fix_situation(merged)
-        fix_admission(merged)
-        fix_evasion(merged)
-        fix_carga(merged)
-
-        return merged
+    return merged
 
 
 def clean_history(df):
-    df.drop(['ID_NOTA', 'CONCEITO', 'ID_LOCAL_DISPENSA', 'SITUACAO_CURRICULO',
-             'ID_CURSO_ALUNO', 'ID_VERSAO_CURSO', 'ID_CURRIC_ALUNO',
-             'ID_ATIV_CURRIC', 'SITUACAO_ITEM', 'ID_ESTRUTURA_CUR', 'NUM_VERSAO'
-            ], axis=1, inplace=True)
+    print(df.columns)
+
+    drop_columns = ['ID_NOTA', 'CONCEITO', 'ID_LOCAL_DISPENSA', 'SITUACAO_CURRICULO',
+        'ID_CURSO_ALUNO', 'ID_VERSAO_CURSO', 'ID_CURRIC_ALUNO',
+        'ID_ATIV_CURRIC', 'SITUACAO_ITEM', 'ID_ESTRUTURA_CUR'
+    ]
+
+    drop_columns = [x for x in drop_columns if x in df.columns]
+
+    df.drop(drop_columns, axis=1, inplace=True)
+
     df['PERIODO'] = df['PERIODO'].str.split('o').str[0]
 
 
 def clean_register(df):
-        df_split = df['PERIODO_INGRESSO'].str.split('/')
-        df['ANO_INGRESSO'] = df_split.str[0]
-        df['SEMESTRE_INGRESSO'] = df_split.str[1].str.split('o').str[0]
-        df_split = df['PERIODO_EVASAO'].str.split('/')
-        df['ANO_EVASAO'] = df_split.str[0]
-        df['SEMESTRE_EVASAO'] = df_split.str[1].str.split('o').str[0]
+    df_split = df['PERIODO_INGRESSO'].str.split('/')
+    df['ANO_INGRESSO'] = df_split.str[0]
+    df['SEMESTRE_INGRESSO'] = df_split.str[1].str.split('o').str[0]
+    df_split = df['PERIODO_EVASAO'].str.split('/')
+    df['ANO_EVASAO'] = df_split.str[0]
+    df['SEMESTRE_EVASAO'] = df_split.str[1].str.split('o').str[0]
+
+    drop_columns = ['ID_PESSOA', 'NOME_PESSOA', 'DT_NASCIMENTO', 'NOME_UNIDADE','COD_CURSO',
+                    'PERIODO_INGRESSO', 'PERIODO_EVASAO']
+
+    drop_columns = [x for x in drop_columns if x in df.columns]
+
+    df.drop(drop_columns, axis=1, inplace=True)
 
-        df.drop(['ID_PESSOA', 'NOME_PESSOA', 'DT_NASCIMENTO', 'NOME_UNIDADE','COD_CURSO', 'PERIODO_INGRESSO', 'PERIODO_EVASAO'],axis=1, inplace=True)
+
+def get_situation(d, default):
+    def getter(x):
+        return invert_dict(d).get(x, default)
+    return getter
 
 
 def fix_situation(df):
-        for situation in Situation.SITUATIONS:
-                df.loc[df.SITUACAO == situation[1], 'SITUACAO'] = situation[0]
+    df.rename(columns={"SITUACAO": "SITUACAO2"}, inplace=True)
+
+    df['SITUACAO'] = df.SITUACAO2.apply(get_situation(Situation.SITUATIONS, Situation.SIT_OUTROS))
+
+    df.drop(['SITUACAO2'], axis=1, inplace=True)
 
 
 def fix_admission(df):
-        for adm in AdmissionType.ADMISSION_FORM:
-                df.loc[df.FORMA_INGRESSO == adm[1], 'FORMA_INGRESSO'] = adm[0]
+    df.rename(columns={'FORMA_INGRESSO': 'FORMA_INGRESSO2'}, inplace=True)
+
+    df['FORMA_INGRESSO'] = df.FORMA_INGRESSO2.apply(get_situation(AdmissionType.ADMISSION_FORM,
+                                                                  AdmissionType.AT_OUTROS))
+
+    df.drop(['FORMA_INGRESSO2'], axis=1, inplace=True)
 
 
 def fix_carga(df):
-        df["CH_TOTAL"] = df["CH_TEORICA"]+df["CH_PRATICA"]
+    df["CH_TOTAL"] = df["CH_TEORICA"]+df["CH_PRATICA"]
+
 
 def fix_evasion(df):
-        evasionForms = [x[1] for x in EvasionForm.EVASION_FORM]
-        df.loc[~df.FORMA_EVASAO.isin(evasionForms), 'FORMA_EVASAO'] = 100
-        for evasion in EvasionForm.EVASION_FORM:
-                #~ df.loc[df.FORMA_EVASAO.str.contains(evasion[1]).fillna(1.0), 'FORMA_EVASAO'] = evasion[0]
-                df.loc[df.FORMA_EVASAO == evasion[1], 'FORMA_EVASAO'] = evasion[0]
-
-                #~ if(evasion[0] == 100):
-                        #~ for x in df.FORMA_EVASAO.str.contains(evasion[1]).fillna(False):
-                                #~ if(x != 0.0):
-                                        #~ print(x)
-        #~ print(df.FORMA_EVASAO.str.contains(evasion[1]).fillna(5))
-        #~ print(df[['MATR_ALUNO','FORMA_EVASAO']])
+    df.rename(columns={'FORMA_EVASAO': 'FORMA_EVASAO2'}, inplace=True)
+
+    df['FORMA_EVASAO'] = df.FORMA_EVASAO2.apply(get_situation(EvasionForm.EVASION_FORM,
+                                                              EvasionForm.EF_OUTROS))
+
+    df.drop(['FORMA_EVASAO2'], axis=1, inplace=True)
diff --git a/src/script/main.py b/src/script/main.py
index fb45fa4376ba1c55fd62aa39c2787af16ba594c1..a4f8ea7337d9fc7569f813de2e07f1a28c5b8eb1 100644
--- a/src/script/main.py
+++ b/src/script/main.py
@@ -31,6 +31,7 @@ def main():
     start_time_exec = time.time()
 
     dataframe = load_dataframes(os.getcwd() + '/script/' + 'base')
+
     build_cache(dataframe)
     cpu_time = timedelta(seconds=round(time.clock() - start_time))
     analises_disciplinas(dataframe)
diff --git a/src/script/utils/situations.py b/src/script/utils/situations.py
index d44993528dbff0fc440702eacae7b1cfc44efaf1..3f4f1ef9859176c0b48af2c5d8580c4cf6872546 100644
--- a/src/script/utils/situations.py
+++ b/src/script/utils/situations.py
@@ -74,6 +74,7 @@ class EvasionForm:
 # orientaçao: verificar se media_final é maior que 100 se sim atribua 0 se nao
 # atribua media_final
 
+
 class Situation:
     SIT_DESCONHECIDA = 0
 
diff --git a/src/script/utils/utils.py b/src/script/utils/utils.py
index 791237926af8d384ae0a93ed082b2376084bc1a6..6be89c644e15c3e93ba473dcdecc8a852b06ba2b 100644
--- a/src/script/utils/utils.py
+++ b/src/script/utils/utils.py
@@ -10,6 +10,10 @@ except:
     DEBUG = True
 
 
+def invert_dict(d):
+    return {v: k for k, v in d}
+
+
 def build_path(path):
     if not os.path.exists(path):
         os.mkdir(path)