From ee8c311c79a1e9cd908ed853d9d109b28391261e Mon Sep 17 00:00:00 2001
From: odair mario <badwolves123@gmail.com>
Date: Sun, 1 Oct 2017 20:59:35 -0300
Subject: [PATCH] qnt vez cursadas ate aprov, sem media

---
 script/analysis/course_analysis.py | 64 +++++++++++++++---------------
 1 file changed, 31 insertions(+), 33 deletions(-)

diff --git a/script/analysis/course_analysis.py b/script/analysis/course_analysis.py
index a9f9ce6..dd6591d 100644
--- a/script/analysis/course_analysis.py
+++ b/script/analysis/course_analysis.py
@@ -1,51 +1,49 @@
 # -*- coding: utf-8 -*-
-
 import pandas as pd
 import numpy as np
+# import utils.situations
+
 df = pd.read_excel("../base/historico.xls")
 
 # imprime completamente um dataframe
+
 def print_analise(d):
-	with pd.option_context('display.max_rows', None, 'display.max_columns', 27):
-		print(d)
+    with pd.option_context('display.max_rows', None, 'display.max_columns', 27):
+        print(d)
 
 # calcula as taxas
-def func(x,matr):
-	c = matr[x['COD_ATIV_CURRIC']].values[0]
-	return (x['counts'] / c)
-
-#quantidade de matriculas
-def qnt_matr(df):
-	return df.groupby(['COD_ATIV_CURRIC']).size()
-
-
-def analise(df):
-	c = df.groupby(['COD_ATIV_CURRIC']).size()
-	diciplinas = df.groupby(['COD_ATIV_CURRIC','SIGLA']).size().reset_index(name='counts')
-	i=diciplinas.groupby(['COD_ATIV_CURRIC','SIGLA','counts']).apply(lambda x: func(x,matr)).reset_index(name='taxas gerais')
-	print_analise(i)
-
-matr = qnt_matr(df)
-analise(df)
-
-
-
-
-
-
-
-
-
-
 
 
+def func(x, matr):
+    c = matr[x['COD_ATIV_CURRIC']].values[0]
+    return (x['counts'] / c)
 
+# quantidade de matriculas
 
+def counts_matr(df):
+    return df.groupby(['COD_ATIV_CURRIC']).size()
 
+def analysis(df):
+    qnt_matr = counts_matr(df)  # quantidade de matriculas disciplina
+    # conta quantas vezes os valores de 'SIGLA' se repete para cada disciplina
+    disciplinas = df.groupby(['COD_ATIV_CURRIC', 'SIGLA']
+                             ).size().reset_index(name='counts')
+    # adiciona mais uma coluna ao df disciplina com as taxas de cada valor de 'SIGLA'
+    disciplina = disciplinas.groupby(['COD_ATIV_CURRIC', 'SIGLA', 'counts']).apply(
+        lambda x: func(x, matr)).reset_index(name='taxas gerais')
+    return disciplina
+# quantidade de vezes cursadas ate obter a aprovacao
 
 
+def qnt_aprov(df):
+    qnt = df.groupby(['MATR_ALUNO','COD_ATIV_CURRIC']).size().reset_index(name='quantida aprov')
+    return qnt
+    # print(qnt)
 
 
+matr = counts_matr(df)
+analysis(df)
+qnt_aprov(df)
 
 #
 ##f = lambda x: x / c[x]
@@ -53,9 +51,9 @@ analise(df)
 #k = (df.sort(['ANO','PERIODO']))
 ##(p.apply(lambda x: print(p['COD_ATIV_CURRIC'])))
 #
-## # .size().reset_index(name = "count");
-## # c = p.groupby(['count','SIGLA']).size()
+# .size().reset_index(name = "count");
+# c = p.groupby(['count','SIGLA']).size()
 ## ''' percorre mais uma vez a serie para aplicar a funcao lambida, se a '''
 ##  c = lambda x: x+1
 ## curses = df['COD_ATIV_CURRIC'].drop_duplicates()
-## 'MATR_ALUNO','
+# 'MATR_ALUNO','
-- 
GitLab