metodos-intensivos.Rmd 21.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
---
title: "Métodos computacionalmente intensivos para inferência"
author: "[Walmes Marques Zeviani](http://lattes.cnpq.br/4410617539281650)"
date: '`r Sys.Date()`'
output:
  html_document:
    theme: yeti
---

```{r, include = FALSE}
opts_chunk$set(cache = TRUE,
               tidy = FALSE,
               fig.width = 7,
               fig.height = 6,
               fig.align = "center",
               eval.after= "fig.cap",
               warning = FALSE,
               error = FALSE,
               message = FALSE)
```

# Testes de aleatorização

## Uma senhora toma chá

```{r}
#-----------------------------------------------------------------------
# Uma senhora toma chá.

# Quantidade de maneiras de gerar dois grupos de 4 xícaras usando 8.
n_poss <- choose(8, 4)
n_poss

# De 4 xícaras selecionadas para um grupo, X representa o número de
# acertos.
n_acertar <- sapply(4:0,
                    FUN = function(i) {
                        # (formas de acertar x em 4) * (formas de errar x em 4).
                        choose(4, i) * choose(4, 4 - i)
                    })
n_acertar

# Pr(Acerto total) = 1/70 < 5%.
cumsum(n_acertar)/n_poss

# Comprovando por simulação.
v <- rep(0:1, each = 4)
mean(replicate(n = 100000,
               expr = all(sample(v) == v)))

# Essa forma de fazer a conta é mais realista mas dá na mesma.
mean(replicate(n = 100000,
               expr = all(sample(v) == sample(v))))
```

## Teste para a diferença de médias

```{r}
#-----------------------------------------------------------------------
# Exemplo com teste para a diferença de médias.

# Comprimentos de crânios de cães pré-históricos.
m <- c(120, 107, 110, 116, 114, 111, 113, 117, 114, 112)
f <- c(110, 111, 107, 108, 110, 105, 107, 106, 111, 111)

plot(ecdf(m), xlim = range(c(m, f)), col = "cyan")
lines(ecdf(f), col = "magenta")
rug(m, col = "cyan")
rug(f, col = "magenta")

# Diferença de média observada.
d <- mean(m) - mean(f)
d

# Todos as combinações possíveis.
choose(n = 20, k = 10)

#--------------------------------------------
# Com todas as combinações possíveis (exaustão).

# Para construir todas as combinações possíveis.
k <- combn(x = 1:20, m = 10)
dim(k)

# Vetor com os valores dos dois grupos concatenados.
mf <- c(m, f)

# Vetor cheio de zeros.
g <- integer(20)

# Calcula a diferença para todo arranjo possível.
D <- apply(k,
           MARGIN = 2,
           FUN = function(i) {
               # Alguns elementos do vetor convertidos para 1.
               g[i] <- 1L
               # Cálculo da estatística de teste.
               -diff(tapply(mf, g, FUN = mean))
           })

# Histograma da distribuição da estatística sib H_0.
hist(D, col = "gray50")
rug(D)
abline(v = d, col = 2)

plot(ecdf(D), cex = 0)
rug(D)
abline(v = d, col = 2)

# P-valor do teste.
2 * sum(D >= d)/length(D)

#--------------------------------------------
# Com simulação (não necessáriamente exaustivo).

# Variáveis que indentifica os grupos.
g <- rep(1:2, each = 10)

# Apenas para conferir.
cbind(g, mf)

# Replicando a diferença para grupos formados por aleatorização.
D <- replicate(9999, {
    gg <- sample(g)
    -diff(tapply(mf, gg, FUN = mean))
})

# Tem que juntar a estatística observada com as simuladas.
D <- c(D, d)

hist(D, col = "gray50")
rug(D)
abline(v = d, col = 2)

plot(ecdf(D), cex = 0)
rug(D)
abline(v = d, col = 2)

# P-valor do teste.
2 * sum(D >= d)/length(D)
```

## Teste para a correlação

```{r}
#-----------------------------------------------------------------------
# Teste de aleatorização para a correlação.

# N = 5 para um par de medidas.
x <- c(4.1, 8.3, 2.9, 10.8, 9.5)
y <- c(3.7, 5.1, 1.0, 7.7, 8.9)

cbind(x, y)

plot(x, y)

# Estatística de teste na amostra original.
r0 <- cor(x, y, method = "pearson")
r0

# Todas as permutações possiveis: 5! = 120 do vetor x.
X <- gtools::permutations(n = length(x), r = length(x), v = x)
str(X)
head(X)

# As 120 correlações obtidas para cada arranjo.
r <- apply(X, MARGIN = 1, FUN = cor, y = y, method = "spearman")

# P-valor do teste.
2 * sum(r >= r0)/length(r)
```

## Índice de Moran

  * <http://gis.stackexchange.com/questions/161887/significance-test-for-morans-i-using-monte-carlo-simulation>.
  * <https://en.wikipedia.org/wiki/Moran's_I>.
  * <http://rstudio-pubs-static.s3.amazonaws.com/268058_dd37b98f25a4496b9f0a7eb2fcf892cd.html>.
  * <http://rspatial.org/analysis/rst/3-spauto.html>.

```{r}
#-----------------------------------------------------------------------
# Índice de Moran para medir dependência espacial.

# Coordenadas dos eventos em uma malha regular.
x <- 1:8
y <- 1:8

# Para criar a matriz de pesos.
ind <- expand.grid(i = 1:length(x), j = 1:length(y))
f <- function(i, j) {
    u <- min(3, sum(abs(ind[i, ] - ind[j, ])))
    c(0, 1, sqrt(1/2), 0)[u + 1]
}
w <- matrix(0, nrow(ind), nrow(ind))
for (i in 1:nrow(ind)) {
    for (j in 1:nrow(ind)) {
        w[i, j] <- f(i, j)
    }
}
w <- w/sum(w)

image(w)

# Índice de Moran.
moran <- function(x, weights) {
    # Tamanho da amostra.
    n <- length(x)
    # Valores normalizados.
    z <- as.vector((x - mean(x))/sd(x))
    # Índice de Moran.
    as.vector(z %*% weights %*% (z * sqrt(n/(n - 1))))
}

# Teste de permutação com gráfico.
ppt <- function(z, w, N = 10000, stat, ...) {
    # Índice de Moran por reamostragem.
    sim <- replicate(N,
                     moran(sample(z), w))
    # Determina o p-valor.
    p.value <- mean((all <- c(stat, sim)) >= stat)
    # Histograma da distribuição empírica sob H_0.
    hist(sim,
         sub = paste("p =", round(p.value, 4)),
         xlim = range(all),
         ...)
    abline(v = stat, col = "#903030", lty = 3, lwd = 2)
    return(p.value)
}

# Observações simuladas.
set.seed(17)
par(mfrow = c(2, 3))

# Dados com dependência espacial ---------------------------------------
# Indução de autocorrelação por meio de uma tendência.
z <- matrix(rexp(length(x) * length(y),
                 outer(x, y^2)),
            length(x))
image(log(z), main = "Com dependência")

# Índice de Moran com dados originais.
stat <- moran(z, w)
stat

hist(z)
ppt(z, w, stat = stat, main = "I de Moran", xlab = "I")

# Dados sem dependência espacial ---------------------------------------
# Geração de de um conjunto de dados sob hipótese nula.
z <- matrix(rnorm(length(x) * length(y), 0, 1/2), length(x))
image(z, main = "Sem dependência")

# Índice de Moran com dados originais.
stat <- moran(z, w)
stat

hist(z)
ppt(z, w, stat = stat, main = "I de Moran", xlab = "I")
```

# Jackknife

## Regressão não linear

```{r}
#-----------------------------------------------------------------------
# Aplicação de Jackknife em modelos de regressão não linear.

library(latticeExtra)
library(car)
library(alr3)

# Curva "palpite".
start <- list(th0 = 75, th1 = 0.5, th2 = 50)
xyplot(C ~ Temp, data = segreg) +
    layer(panel.curve(th0 + th1 * (x - th2) * (x >= th2) +
                      0 * (x < th2), lty = 2),
          data = start)

# Ajuste.
n0 <- nls(C ~ th0 + th1 * (Temp - th2) * (Temp >= th2) +
              0 * (Temp < th2),
          data = segreg,
          start = start)

# Estimativas e medidas de ajuste.
summary(n0)

# Observados e preditos.
xyplot(C ~ Temp, data = segreg) +
    layer(panel.curve(th0 + th1 * (x - th2) * (x >= th2) +
                      0 * (x < th2)),
          data = as.list(coef(n0)))

#-----------------------------------------------------------------------
# Estimativas Jackknife para os parâmetros.


theta <- coef(n0) # Estimativas com todos os dados.
n <- nrow(segreg) # Número de observações.

# Matriz vazia para armazenar os pseudo-valores.
thetaj <- matrix(0, nrow = n, ncol = length(theta))
colnames(thetaj) <- names(theta)

# Ajustes deixando uma observação de fora (leave-one-out).
for (i in 1:n) {
    # Reajusta o modelo, i.e. estima com leave-one-out.
    n1 <- nls(C ~ th0 + th1 * (Temp - th2) * (Temp >= th2) +
                  0 * (Temp < th2),
              data = segreg[-i, ],
              start = coef(n0))
    # Calcula os pseudo valores.
    thetaj[i, ] <- n * theta - (n - 1) * coef(n1)
}

# Os primeiros pseudo valores.
head(thetaj)

# Estimativas pontuais.
jk <- colMeans(thetaj)
cbind(MLE = theta, Jack = jk, Vício = theta - jk)

# Erros padrões.
cbind(MLE = summary(n0)$coefficients[, "Std. Error"],
      Jack = apply(thetaj, MARGIN = 2, sd)/sqrt(n))

# Pacote com função pronta para Jackknife para modelos não lineares.
library(nlstools)
# ls("package:nlstools")

# Aplica Jackknife sobre o modelo.
j0 <- nlsJack(n0)
summary(j0)
```

## Dose letal para 50% da população

```{r}
#-----------------------------------------------------------------------
# Inferência para a DL 50.

# library(labestData)
# data(PaulaTb3.12)
# str(PaulaTb3.12)
# help(PaulaTb3.12, h = "html")
# # Converte a resposta para binário.
# PaulaTb3.12$resp <- as.integer(PaulaTb3.12$resp) - 1
# dput(PaulaTb3.12)

PaulaTb3.12 <-
structure(list(vol = c(3.7, 3.5, 1.25, 0.75, 0.8, 0.7, 0.6, 1.1,
0.9, 0.9, 0.8, 0.55, 0.6, 1.4, 0.75, 2.3, 3.2, 0.85, 1.7, 1.8,
0.4, 0.95, 1.35, 1.5, 1.6, 0.6, 1.8, 0.95, 1.9, 1.6, 2.7, 2.35,
1.1, 1.1, 1.2, 0.8, 0.95, 0.75, 1.3), razao = c(0.825, 1.09,
2.5, 1.5, 3.2, 3.5, 0.75, 1.7, 0.75, 0.45, 0.57, 2.75, 3, 2.33,
3.75, 1.64, 1.6, 1.415, 1.06, 1.8, 2, 1.36, 1.35, 1.36, 1.78,
1.5, 1.5, 1.9, 0.95, 0.4, 0.75, 0.03, 1.83, 2.2, 2, 3.33, 1.9,
1.9, 1.625), resp = c(1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1,
1, 1, 0, 0, 1)), .Names = c("vol", "razao", "resp"), row.names = c(NA,
39L), class = "data.frame")

layout(1)
plot(resp ~ vol, data = PaulaTb3.12)

m0 <- glm(resp ~ vol,
          data = PaulaTb3.12,
          family = binomial)
summary(m0)

# DL_50.
dl <- -coef(m0)[1]/coef(m0)[2]

# str(m0$family)$link

plot(resp ~ vol, data = PaulaTb3.12)
curve(m0$family$linkinv(coef(m0)[1] + coef(m0)[2] * x),
      add = TRUE)
abline(v = dl, h = 0.5, lty = 2)

n <- nrow(PaulaTb3.12)
i <- 1:n

# Estimativas por Jackknife.
DL <- sapply(i,
             FUN = function(i) {
                 m0 <- glm(resp ~ vol,
                           data = PaulaTb3.12[-i, ],
                           family = binomial)
                 # Estimativa Parcial.
                 DL <- -coef(m0)[1]/coef(m0)[2]
                 # Pseudo-valor.
                 n * dl - (n - 1) * DL
             })

m <- mean(DL)
e <- sd(DL)/sqrt(n)

cbind(Est = rbind(MLE = dl,
                  Jack = m),
      StdErr = rbind(MLE = car::deltaMethod(m0, g = "-(Intercept)/vol")["SE"],
                     Jack = e))

plot(ecdf(DL))
rug(DL)

plot(density(DL))
rug(DL)

# NOTE: alguma pista sobre porque a distribuição fica bimodal?
```

## Uma situação problemática

```{r}
#-----------------------------------------------------------------------
# Aplicação na Mediana (derivada não suave) -> problema.

# Ordena o vetor de valores.
x <- sort(precip)

# Calcula a mediana com os dados originais.
M <- median(x)
M

n <- length(x)
i <- 1:length(x)

# Estimativas da mediana por Jackknife.
y <- sapply(i,
            FUN = function(i) {
                ep <- median(x[-i])
                pv <- n * M - (n - 1) * ep
                return(pv)
            })

stem(y)

# NOTE: Explique porque o Jackknife para a mediana só retornou 2
# valores? Considere que o tamanho da amostra é dado abaixo.
length(x)
```

# Bootstrap

## Regressão não linear

```{r}
#-----------------------------------------------------------------------
# Aplicação de bootstrap. Estudo de caso com modelos não lineares.

library(alr3)
str(turk0)

# Gráfico dos valores observados.
plot(Gain ~ A, data = turk0)

# Lista com os valores iniciais.
start <- list(Int = 625, Ass = 180, Mei = 0.1)

# Adiciona as curvas.
with(start, {
    curve(Int + Ass * A/(Mei + A),
          xname = "A", add = TRUE, col = 2)
    curve(Int + Ass * (1 - 2^(-A/Mei)),
          xname = "A", add = TRUE, col = 4)})

# Ajuste do primeiro modelo.
n0 <- nls(Gain ~ Int + Ass * A/(Mei + A),
          data = turk0,
          start = start)

# Ajuste do segundo modelo.
n1 <- nls(Gain ~ Int + Ass * (1 - 2^(-A/Mei)),
          data = turk0,
          start = start)

cbind(coef(n0), coef(n1))

#-----------------------------------------------------------------------
# Criando funções que fazem reamostragem dos dados e ajustam o modelo.

n <- nrow(turk0)
i <- 1:n

myboot0 <- function(formula, start) {
    n0 <- nls(formula = formula,
              data = turk0[sample(i, n, replace = TRUE), ],
              start = start)
    coef(n0)
}

#-----------------------------------------------------------------------
# Replicando.

# B = 999 reamostragens.
b0 <- replicate(999,
                myboot0(Gain ~ Int + Ass * A/(Mei + A), start))
b1 <- replicate(999,
                myboot0(Gain ~ Int + Ass * (1 - 2^(-A/Mei)), start))

# Conjunto de 1000 estimativas bootstrap.
b0 <- cbind(b0, coef(n0))
b1 <- cbind(b1, coef(n1))
str(b0)

# Calcula o vício absoluto (bootstrap - original).
rbind(n0 = rowMeans(b0) - coef(n0),
      n1 = rowMeans(b1) - coef(n1))

# Variância do estimador.
rbind(n0 = apply(b0, MARGIN = 1, var),
      n1 = apply(b1, MARGIN = 1, var))

# Função para calcular o erro quadrático médio.
eqm <- function(x) {
    sum((x - tail(x, 1))^2)/length(x)
}

# Erro quadrático médio.
rbind(n0 = apply(b0, 1, FUN = eqm),
      n1 = apply(b1, 1, FUN = eqm))
```

## Inferência para valores preditos

```{r}
#-----------------------------------------------------------------------
# Curvas ajustadas de onde é possível determinar uma banda de confiança.

bts <- cbind(rep(1:2, each = ncol(b0)),
             as.data.frame(rbind(t(b0), t(b1))))
splom(bts[, -1], groups = bts[, 1])

par(mfrow = c(1, 2))
plot(Gain ~ A, data = turk0, type = "n")
apply(b0,
      MARGIN = 2,
      FUN = function(b) {
          curve(b[1] + b[2] * x/(b[3] + x),
                add = TRUE, col = rgb(0, 1, 1, 0.25), n = 51)
          invisible()
      })
points(Gain ~ A, data = turk0)
abline(v = 0.2, lty = 2)
plot(Gain ~ A, data = turk0, type = "n")
apply(b1,
      MARGIN = 2,
      FUN = function(b) {
          curve(b[1] + b[2] * (1 - 2^(-x/b[3])),
                add = TRUE, col = rgb(1, 1, 0, 0.25), n = 51)
          invisible()
      })
points(Gain ~ A, data = turk0)
abline(v = 0.2, lty = 2)

#-----------------------------------------------------------------------
# Estimativa do valor da função em x = 0.2.

p0 <- apply(b0, MARGIN = 2,
            FUN = function(b){
                b[1] + b[2] * 0.2/(b[3] + 0.2)
            })
p1 <- apply(b1, MARGIN = 2,
            FUN = function(b){
                b[1] + b[2] * (1 - 2^(-0.2/b[3]))
            })

cbind(Est = rbind(mean(p0), mean(p1)),
      StdErr = rbind(sd(p0), sd(p1)))
```

## Usando o pacote `boot`

```{r}
#-----------------------------------------------------------------------
# Usando o pacote boot.

library(boot)
library(latticeExtra)

# dput(as.list(coef(n1)))
start <- list(Int = 622.958054146589,
              Ass = 178.251908347242,
              Mei = 0.097321927254495)

# Criar uma função com dois argumentos: o data.frame original e um vetor
# que vai representar o índice das linhas usado para reamostrar dos
# dados.
fitmodel <- function(dataset, index) {
    n0 <- nls(Gain ~ Int + Ass * (1 - 2^(-A/Mei)),
              data = dataset[index, ],
              start = start)
    c(coef(n0), s2 = deviance(n0)/df.residual(n0))
}

set.seed(321)
b0 <- boot(data = turk0,
           statistic = fitmodel,
           R = 1999)

class(b0)
methods(class = class(b0))

summary(b0)

# Como são obtidos.
theta <- b0$t

# Estimativas como conjunto de dados original.
b0$t0

# Vício.
apply(theta, MARGIN = 2, FUN = mean) - b0$t0

# Desvio-padrão boostrap.
apply(theta, MARGIN = 2, FUN = sd)

# Mediana bootstrap.
apply(theta, MARGIN = 2, FUN = median)

st <- summary(b0)
str(st)

# Gráfico de pares.
pairs(b0)

vcov(b0)
cov2cor(vcov(b0))

# Extrair os vetores de estativativas bootstrap.
str(b0)
colnames(b0$t) <- names(b0$t0)
best <- stack(as.data.frame(b0$t))
names(best)

st

densityplot(~values | ind,
            data = best,
            scales = "free",
            as.table = TRUE) +
    layer(panel.abline(v = st$original[which.packet()] +
                           c(0, st$bootBias[which.packet()]),
                       col = c(1, 2),
                       lty = 2))

# Intervalos de confiança.
confint(b0, type = "norm")
confint(b0, type = "basic")
confint(b0, type = "perc")
confint(b0, type = "bca")
```

# Monte Carlo

## Processo pontual

```{r}
#-----------------------------------------------------------------------
# Teste para independência de processo pontual.

plot(NULL, NULL, xlim = c(0, 1), ylim = c(0, 1), asp = 1)
lines(x = c(0, 1, 1, 0, 0), y = c(0, 0, 1, 1, 0))
# xy <- locator(n = 20, type = "p", pch = 19)
# dput(lapply(xy, round, digits = 3))

xy <- structure(list(x = c(0.204, 0.186, 0.529, 0.529, 0.385, 0.579,
                           0.918, 0.798, 0.634, 0.761, 0.704, 0.485,
                           0.291, 0.341, 0.402, 0.833, 0.972, 0.625,
                           0.732, 0.315),
                     y = c(0.829, 0.545, 0.526, 0.752, 0.674, 0.648,
                           0.792, 0.33, 0.121, 0.127, 0.332, 0.352,
                           0.188, 0.452, 0.221, 0.524, 0.957, 0.964,
                           0.755, 0.332)),
                .Names = c("x", "y"))

#-----------------------------------------------------------------------

# Transforma a lista em matriz.
xy <- do.call(cbind, xy)

plot(xy,
     NULL,
     xlim = c(0, 1),
     ylim = c(0, 1),
     asp = 1,
     axes = FALSE,
     ann = FALSE)
lines(x = c(0, 1, 1, 0, 0),
      y = c(0, 0, 1, 1, 0),
      lty = 2)

# Calcula todas as distâncias (euclidianas).
d <- dist(xy)
d

# Obtém a menor distância.
m <- min(d)

# Número de pontos.
n <- nrow(xy)

# Geração de estatísticas por simulação do modelo assumido sob
# hipótese nula: localização uniforme no quadrado.
M <- replicate(9999, {
    # As localizações de n pontos.
    loc <- cbind(x = runif(n),
                 y = runif(n))
    # A menor distância entre eles sob H_0.
    min(dist(loc))
})

# Concatena as estatísticas simuladas com a observada.
M <- c(m, M)

# Gráfico da distribuição acumulada empírica sob H_0.
plot(ecdf(M))
abline(h = c(0.025, 0.975), lty = 2, col = 2)
abline(v = m, col = 2)

# Gráfico da distribuição acumulada empírica sob H_0.
plot(density(M))
abline(v = m, col = 2)
abline(v = quantile(M, c(0.025, 0.975)), lty = 2, col = 2)
rug(M)

# P-valor.
2 * sum(M > m)/length(M)

#-----------------------------------------------------------------------
# Moficando a estatística de teste.

xy <- structure(list(x = c(0.088, 0.326, 0.577, 0.846, 0.857, 0.568,
                           0.306, 0.077, 0.077, 0.328, 0.597, 0.883,
                           0.863, 0.64, 0.337, 0.088, 0.077, 0.346,
                           0.654, 0.619),
                     y = c(0.92, 0.922, 0.916, 0.935, 0.737, 0.674,
                           0.67, 0.665, 0.452, 0.502, 0.461, 0.454,
                           0.256, 0.26, 0.26, 0.219, 0.045, 0.06, 0.058,
                           0.439)),
                .Names = c("x", "y"))

# Transforma a lista em matriz.
xy <- do.call(cbind, xy)

plot(xy,
     NULL,
     xlim = c(0, 1),
     ylim = c(0, 1),
     asp = 1,
     axes = FALSE,
     ann = FALSE)
lines(x = c(0, 1, 1, 0, 0),
      y = c(0, 0, 1, 1, 0),
      lty = 2)

# Todas as distância entre os pontos (a estatística de teste é um vetor
# e não um escalar).
d <- c(dist(xy))
d

# Gerando estatísticas de teste por simulação.
D <- replicate(499, {
    dist(cbind(x = runif(n), y = runif(n)))
})

# Juntanto observado com simulado.
D <- cbind(d, D)
str(D)

plot(ecdf(D[, 1]), cex = 0)
for (i in 2:ncol(D)) {
    lines(ecdf(D[, i]), cex = 0, col = "gray50")
}
lines(ecdf(D[, 1]), cex = 0, col = 2, lwd = 2)
```

## Amostragem por conjuntos ordenados

```{r}
#-----------------------------------------------------------------------
# Amostragem por Conjuntos Ordenados.

# Extraí valores de uma população normal padrão.
rand <- function(n) {
    rnorm(n, 0, 1)
}
rand(10)

# Ranked Set Sampling (Perfect Ranking). Calcula a média.
rss <- function(m = 3) {
    x <- matrix(rand(m * m), nrow = m)
    x <- apply(x, MARGIN = 1, sort)
    mean(diag(x))
}
rss(m = 5)

# Simple Random Sampling. Calcula a média.
srs <- function(m = 3) {
    mean(rand(m))
}
rss(m = 5)

# Ranked Set Sampling with Unperfect Ranking. Calcula a média.
rssur <- function(m = 3, rho) {
    x <- MASS::mvrnorm(m * m,
                       mu = c(0, 0),
                       Sigma = matrix(c(1, rho, rho, 1), nrow = 2))
    g <- gl(m, m)
    b <- by(data = x,
            INDICES = g,
            FUN = function(y) {
                o <- order(y[, 2])
                # cbind(y[o, 1], y[o, 2])
                y[o, 1]
            }, simplify = TRUE)
    mean(diag(do.call(rbind, b)))
}
rssur(m = 5, rho = 0.95)

#-----------------------------------------------------------------------
# Simulação.

# Tamanho da amostra final.
m <- 10

# Distribuição da média na amostra aleatória simples.
system.time(m1 <- replicate(1000, srs(m = m)))

# Distribuição da média na amostra por conjuntos ordenados perfeito.
system.time(m2 <- replicate(1000, rss(m = m)))

# Distribuição da média na amostra por conjuntos ordenados imperfeito.
system.time(m3 <- replicate(1000, rssur(m = m, rho = 0.75)))

library(lattice)
library(latticeExtra)

densityplot(~m1 + m2 + m3,
            auto.key = TRUE,
            layout = c(NA, 1)) +
    layer(panel.abline(v = 0, lty = 2))

ecdfplot(~m1 + m2 + m3,
         auto.key = TRUE,
         layout = c(NA, 1))

qqmath(~m1 + m2 + m3,
       auto.key = TRUE,
       layout = c(NA, 1))
```