Skip to content
Snippets Groups Projects
Commit 84dbbfee authored by Legton's avatar Legton
Browse files

analises de curso terminadas

parent 501580fa
No related branches found
No related tags found
No related merge requests found
......@@ -53,14 +53,14 @@ def general_ira(df):
fixed = df[df.SITUACAO.isin(Situation.SITUATION_AFFECT_IRA)]
fixed = fixed[fixed.MEDIA_FINAL <= 100]
return (fixed.MEDIA_FINAL.mean(), fixed.MEDIA_FINAL.std())
def current_ira(df):
ano_grade = int(df.loc[df['NUM_VERSAO'].idxmax()]['NUM_VERSAO'])
fixed = df.loc[(df['NUM_VERSAO'] == ano_grade)]
fixed = fixed[fixed.SITUACAO.isin(Situation.SITUATION_AFFECT_IRA)]
fixed = fixed[fixed.MEDIA_FINAL <= 100]
return (fixed.MEDIA_FINAL.mean(), fixed.MEDIA_FINAL.std())
def current_students_ira(df):
fixed = df.loc[(df.FORMA_EVASAO == EvasionForm.EF_ATIVO)]
fixed = fixed[fixed.SITUACAO.isin(Situation.SITUATION_AFFECT_IRA)]
......@@ -106,4 +106,74 @@ def average_graduation_time(df):
return average_time
def total_students(df):
return df.loc[(df.FORMA_EVASAO == EvasionForm.EF_ATIVO)].drop_duplicates('MATR_ALUNO').shape[0]
\ No newline at end of file
return df.loc[(df.FORMA_EVASAO == EvasionForm.EF_ATIVO)].drop_duplicates('MATR_ALUNO').shape[0]
def taxa_abandono(df):
students = df['MATR_ALUNO'].drop_duplicates()
total_student = students.shape[0]
total_abandono = students.loc[(df.FORMA_EVASAO == EvasionForm.EF_ABANDONO)].shape[0]
return total_abandono / total_student
def average_ira_graph(df):
alunos = df.drop_duplicates('MATR_ALUNO')
dic = build_dict_ira_medio(alunos)
return dic
def current_students_average_ira_graph(df):
alunos_se = df.loc[(df.FORMA_EVASAO == EvasionForm.EF_ATIVO)]
alunos_se = alunos_se.drop_duplicates('MATR_ALUNO')
dic_se = build_dict_ira_medio(alunos_se)
return dic_se
def graduates_average_ira_graph(df):
alunos_for = df.loc[(df.FORMA_EVASAO == EvasionForm.EF_FORMATURA)]
alunos_for = alunos_for.drop_duplicates('MATR_ALUNO')
dic_for = build_dict_ira_medio(alunos_for)
return dic_for
def period_evasion_graph(df):
di_qtd = {}
dic = {}
evasions_total = 0
year_start = int(df['ANO'].min())
year_end = int(df['ANO'].max()) + 1
students = df.drop_duplicates()
for year in range(year_start, year_end):
for semester in range(1, 3):
evasions = students.loc[(df['ANO_EVASAO'] == str(year)) & (df['SEMESTRE_EVASAO'] == str(semester))].shape[0]
date = str(year) + ' {}º Período'.format(semester)
di_qtd[date] = evasions
evasions_total += evasions
if evasions_total:
for di in di_qtd:
qtd = di_qtd[di]
dic[di] = {'qtd': qtd, 'taxa': (qtd/evasions_total)*100}
return dic
def build_dict_ira_medio(alunos):
dic = {"00-4.9":0, "05-9.9":0, "10-14.9":0, "15-19.9":0, "20-24.9":0, "25-29.9":0, "30-34.9":0,
"35-39.9":0, "40-44.9":0, "45-49.9":0, "50-54.9":0, "55-59.9":0, "60-64.9":0, "65-69.9":0,
"70-74.9":0, "75-79.9":0, "80-84.9":0, "85-89.9":0, "90-94.9": 0,"95-100":0}
iras = []
for index, row in alunos.iterrows():
if(row['MEDIA_FINAL'] is not None):
iras.append(row['MEDIA_FINAL'])
for d in dic:
aux = d.split('-')
v1 = float(aux[0])
if (v1 == 0.0):
v1 += 0.01
v2 = float(aux[1])
dic[d] = sum((float(num) >= v1) and (float(num) < v2) for num in iras)
return dic
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment