Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
adega
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Odair M.
adega
Commits
e04f27bd
Commit
e04f27bd
authored
7 years ago
by
odair mario
Browse files
Options
Downloads
Patches
Plain Diff
codigo mais limpo
parent
c7430986
No related branches found
No related tags found
1 merge request
!1
WIP: Development
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
script/analysis/course_analysis.py
+18
-47
18 additions, 47 deletions
script/analysis/course_analysis.py
with
18 additions
and
47 deletions
script/analysis/course_analysis.py
+
18
−
47
View file @
e04f27bd
...
...
@@ -3,31 +3,25 @@ import pandas as pd
import
json
import
numpy
as
np
import
utils.situations
from
collections
import
OrderedDict
,
defaultdict
# df = pd.read_excel("../base/base-2016-1/historico.xls")
# imprime completamente um dataframe
def
print_analise
(
d
):
'''
imprime todo o dataframe, por default o pandas so imprime as
10 linhas inicias a 10 finais, com essa funcao o pandas imprime
as linhas
'''
with
pd
.
option_context
(
'
display.max_rows
'
,
None
,
'
display.max_columns
'
,
27
):
print
(
d
)
# calcula as taxas
def
func
(
x
,
matr
):
'''
esta funcao recebe como parametro uma linha do dataframe e a
quantidade de matriculas
'''
c
=
matr
[
x
[
'
COD_ATIV_CURRIC
'
]].
values
[
0
]
return
(
x
[
'
Quantidade
'
]
/
c
)
# quantidade de matriculas
def
counts_matr
(
df
):
return
df
.
groupby
([
'
COD_ATIV_CURRIC
'
]).
size
()
# taxas e quantidades semetrais
def
analysis
(
df
):
qnt_matr
=
counts_matr
(
df
)
# quantidade de matriculas disciplina
# conta quantas vezes os valores de 'SIGLA' se repete para cada disciplina
...
...
@@ -36,19 +30,22 @@ def analysis(df):
# adiciona mais uma coluna ao df disciplina com as taxas de cada valor de 'SIGLA'
disciplina
=
disciplinas
.
groupby
([
'
COD_ATIV_CURRIC
'
,
'
SIGLA
'
,
'
Quantidade
'
]).
apply
(
lambda
x
:
func
(
x
,
qnt_matr
)).
reset_index
(
name
=
'
Taxas gerais
'
)
disciplina
=
disciplina
.
drop
(
'
level_3
'
,
1
)
for
dis
in
qnt_matr
.
keys
():
disc
=
disciplina
.
loc
[
disciplina
[
'
COD_ATIV_CURRIC
'
]
==
dis
].
drop
(
'
COD_ATIV_CURRIC
'
,
1
)
disc
=
disc
.
set_index
(
'
SIGLA
'
).
to_dict
(
into
=
OrderedDict
)
with
open
(
dis
+
'
.json
'
,
'
w
'
)
as
f
:
json
.
dump
(
disc
,
f
,
indent
=
4
)
return
disciplina
.
set_index
(
'
COD_ATIV_CURRIC
'
)
disciplina
=
disciplina
.
drop
(
'
level_3
'
,
1
)
# retira coluna duplicada do index
return
disciplina
# quantidade de vezes cursadas ate obter a aprovacao
def
qnt_aprov
(
df
):
qnt
=
df
.
groupby
([
'
MATR_ALUNO
'
,
'
COD_ATIV_CURRIC
'
]
).
size
().
reset_index
(
name
=
'
qnt_aprov
'
)
return
qnt
# transforma o dataframe geral em json, # TODO: fazer o mesmo com o semestral
def
df_to_json
(
disciplina
,
qnt_matr
):
for
dis
in
qnt_matr
.
keys
():
disc
=
disciplina
.
loc
[
disciplina
[
'
COD_ATIV_CURRIC
'
]
==
dis
].
drop
(
'
COD_ATIV_CURRIC
'
,
1
)
# separa o dataframe em disciplina e elimina a coluna codigo
# seta a coluna sigla como index
disc
=
disc
.
set_index
(
'
SIGLA
'
).
to_dict
()
# cria o json
with
open
(
dis
+
'
.json
'
,
'
w
'
)
as
f
:
json
.
dump
(
disc
,
f
,
indent
=
4
)
def
matr_semestre
(
df
):
return
df
.
groupby
([
'
COD_ATIV_CURRIC
'
,
'
PERIODO
'
,
'
ANO
'
]).
size
()
...
...
@@ -61,13 +58,6 @@ def func_semestre(x, matr):
periodo
=
x
[
'
PERIODO
'
].
values
[
0
]
disciplina
=
x
[
'
COD_ATIV_CURRIC
'
].
values
[
0
]
c
=
matr
[
disciplina
,
periodo
,
ano
]
# break
# print(x['PERIODO'])
# print("Disciplina: %s\nPeriodo:%s \nAno:%d"%(disciplina,periodo,ano))
# c = matr['CI056','2']
# print(c)
# print(disciplina)
# print("--------------------------------------------------------------------------")
return
(
x
[
'
counts_semestre
'
]
/
c
)
...
...
@@ -82,25 +72,6 @@ def analysis_semestre(df):
def
Main
(
df
):
Analysis
=
analysis
(
df
)
Analysis_semestre
=
analysis_semestre
(
df
)
# print_analise(Analysis)
matr
=
counts_matr
(
df
)
df_to_json
(
Analysis
,
matr
)
matr_semes
=
matr_semestre
(
df
)
# print_analise(merged)
# main()
# matr = counts_matr(df)
# analysis(df)
# qnt_aprov(df)
#
##f = lambda x: x / c[x]
## p = df.groupby(['COD_ATIV_CURRIC','SIGLA']).size().apply(lambda x: (x /c['CI055'])*100)
#k = (df.sort(['ANO','PERIODO']))
##(p.apply(lambda x: print(p['COD_ATIV_CURRIC'])))
#
# .size().reset_index(name = "count");
# c = p.groupby(['count','SIGLA']).size()
## ''' percorre mais uma vez a serie para aplicar a funcao lambida, se a '''
## c = lambda x: x+1
## curses = df['COD_ATIV_CURRIC'].drop_duplicates()
# 'MATR_ALUNO','
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment