Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
cleaning-portalmec
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Harbor Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Richard Fernando Heise Ferreira
cleaning-portalmec
Commits
e841c770
Commit
e841c770
authored
7 years ago
by
Israel Barreto Sant'Anna
Browse files
Options
Downloads
Patches
Plain Diff
Implemented functions to get objects from tag cluster
parent
5343b99a
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
lib/tasks/tag_clustering.rake
+178
-61
178 additions, 61 deletions
lib/tasks/tag_clustering.rake
with
178 additions
and
61 deletions
lib/tasks/tag_clustering.rake
+
178
−
61
View file @
e841c770
...
...
@@ -7,63 +7,63 @@ namespace :tag do
hash
=
{}
edges_total
=
0
graphPath
=
Rails
.
root
.
join
(
outD
ir
,
fileName
+
".net"
)
def
swap
(
a
,
b
)
tmp
=
a
a
=
b
b
=
tmp
end
LearningObject
.
all
.
each
do
|
lo
|
# for each lo, count tags and tag pairs and add to hash
# if id1 <= id2
# hash[id1][id2] will equal how many times tags with id1 and id2 appear together on a LO
lo
.
tags
.
each
.
with_index
do
|
t
,
i
|
hash
[
t
.
id
]
=
{}
if
hash
[
t
.
id
].
nil?
hash
[
t
.
id
][
t
.
id
]
=
0
if
hash
[
t
.
id
][
t
.
id
].
nil?
hash
[
t
.
id
][
t
.
id
]
+=
1
lo
.
tags
.
drop
(
i
+
1
).
each
do
|
t2
|
if
t
.
id
>
t2
.
id
swap
(
t
,
t2
)
hash
[
t
.
id
]
=
{}
if
hash
[
t
.
id
].
nil?
end
if
hash
[
t
.
id
][
t2
.
id
].
nil?
hash
[
t
.
id
][
t2
.
id
]
=
0
end
hash
[
t2
.
id
]
=
{}
if
hash
[
t2
.
id
].
nil?
# hash[t2.id][t2.id] = 0 if hash[t2.id][t2.id].nil?
# hash[t2.id][t2.id] += 1
# hash[t.id][t.id] = 0 if hash[t.id][t.id].nil?
# hash[t.id][t.id] += 1
hash
[
t
.
id
][
t2
.
id
]
+=
1
end
end
end
File
.
open
(
graphPath
,
"w+"
)
do
|
f
|
f
<<
"*Vertices
#{
Tag
.
all
.
size
}
\n
"
# tags = Tag.all.to_ary
tag_index
=
{}
Tag
.
all
.
each_with_index
do
|
t
,
i
|
f
<<
"
#{
i
+
1
}
\"
#{
t
.
name
}
\"\n
"
tag_index
[
t
.
id
]
=
i
+
1
end
f
<<
"*Edges
#{
edges_total
}
\n
"
hash
.
each
do
|
id1
,
ids2Hash
|
ids2Hash
.
each
do
|
id2
,
value
|
if
id1
!=
id2
f
<<
"
#{
tag_index
[
id1
]
}
#{
tag_index
[
id2
]
}
#{
hash
[
id1
][
id2
].
to_f
/
(
Math
.
sqrt
(
hash
[
id1
][
id1
]
*
hash
[
id2
][
id2
]))
}
\n
"
end
end
end
end
system
(
"infomap --ftree
#{
graphPath
}
#{
Rails
.
root
.
join
(
outDIR
)
}
"
)
graphPath
=
Rails
.
root
.
join
(
outD
IR
,
fileName
+
".net"
)
#
#
def swap(a, b)
#
tmp = a
#
a = b
#
b = tmp
#
end
#
#
LearningObject.all.each do |lo|
#
# for each lo, count tags and tag pairs and add to hash
#
# if id1 <= id2
#
# hash[id1][id2] will equal how many times tags with id1 and id2 appear together on a LO
#
lo.tags.each.with_index do |t, i|
#
hash[t.id] = {} if hash[t.id].nil?
#
hash[t.id][t.id] = 0 if hash[t.id][t.id].nil?
#
hash[t.id][t.id] += 1
#
lo.tags.drop(i+1).each do |t2|
#
if t.id > t2.id
#
swap(t, t2)
#
hash[t.id] = {} if hash[t.id].nil?
#
end
#
if hash[t.id][t2.id].nil?
#
hash[t.id][t2.id] = 0
#
end
#
hash[t2.id] = {} if hash[t2.id].nil?
#
#
# hash[t2.id][t2.id] = 0 if hash[t2.id][t2.id].nil?
#
# hash[t2.id][t2.id] += 1
#
# hash[t.id][t.id] = 0 if hash[t.id][t.id].nil?
#
# hash[t.id][t.id] += 1
#
#
hash[t.id][t2.id] += 1
#
end
#
end
#
end
#
#
File.open(graphPath, "w+") do |f|
#
f << "*Vertices #{Tag.all.size}\n"
#
# tags = Tag.all.to_ary
#
tag_index = {}
#
Tag.all.each_with_index do |t,i|
#
f << "#{i+1} \"#{t.name}\"\n"
#
tag_index[t.id] = i+1
#
end
#
#
f << "*Edges #{edges_total}\n"
#
#
hash.each do |id1, ids2Hash|
#
ids2Hash.each do |id2, value|
#
if id1 != id2
#
f << "#{tag_index[id1]} #{tag_index[id2]} #{hash[id1][id2].to_f/(Math.sqrt(hash[id1][id1]*hash[id2][id2]))}\n"
#
end
#
end
#
end
#
end
#
#
system("infomap --ftree #{graphPath} #{Rails.root.join(outDIR)}")
clusters
=
{
childs:
[],
parent:
nil
}
tags
=
{}
...
...
@@ -84,8 +84,7 @@ namespace :tag do
it
=
clusters
ftree
.
each
do
|
clusterId
|
# p it
clusterId
=
clusterId
.
to_i
clusterId
=
clusterId
.
to_i
-
1
if
it
[
:childs
][
clusterId
].
nil?
it
[
:childs
][
clusterId
]
=
{
childs:
[],
parent:
nil
}
it
[
:childs
][
clusterId
][
:parent
]
=
it
...
...
@@ -93,9 +92,127 @@ namespace :tag do
it
=
it
[
:childs
][
clusterId
]
end
it
[
:childs
][
leafId
]
=
{
id:
tagId
,
rank:
rank
,
name:
name
,
parent:
it
}
tags
[
tagId
]
=
it
it
[
:childs
][
leafId
-
1
]
=
{
id:
tagId
,
rank:
rank
,
name:
name
,
parent:
it
}
tags
[
tagId
]
=
it
[
:childs
][
leafId
-
1
]
end
end
def
calculate_relevance
(
lo
,
close_tags
)
rel
=
0
lo
.
tags
.
each
do
|
t
|
close_tags
.
each
do
|
cloT
|
if
cloT
[
:id
]
==
t
.
id
rel
+=
cloT
[
:rank
]
end
end
end
return
rel
end
def
closest
(
tagId
,
tags
)
clos
=
[]
tags
[
tagId
][
:parent
][
:childs
].
each
do
|
t1
|
rank
=
(
Math
.
log2
(
tags
[
tagId
][
:rank
])
-
Math
.
log2
(
t1
[
:rank
])).
abs
if
rank
<
4
clos
<<
{
id:
t1
[
:id
],
rank:
rank
}
end
end
normalize
(
clos
)
end
def
normalize
(
tags
)
sum
=
0
max
=
0
tags
.
each
do
|
t
|
sum
+=
t
[
:rank
]
max
=
t
[
:rank
]
if
t
[
:rank
]
>
max
end
tags
.
each
do
|
t
|
t
[
:rank
]
=
1
-
(
t
[
:rank
]
/
(
max
*
1.05
))
end
tags
end
def
find_relevant_results
(
tagId
,
tags
)
los
=
{}
close_tags
=
closest
(
tagId
,
tags
)
p
"==============="
p
"close_tags"
close_tags
.
each
{
|
ct
|
p
Tag
.
find
(
ct
[
:id
]).
name
+
" | "
+
ct
[
:id
].
to_s
+
" | "
+
ct
[
:rank
].
to_s
+
" | "
+
tags
[
ct
[
:id
]][
:rank
].
to_s
}
p
"==============="
freq
=
cluster_frequency
(
close_tags
)
LearningObject
.
all
.
each
do
|
lo
|
los
[
lo
.
id
]
=
calculate_relevance
(
lo
,
close_tags
)
# los[lo.id] = frequency_rank_global(lo, close_tags, freq)
# los[lo.id] = frequency_rank(lo, close_tags)
end
los
=
los
.
sort_by
{
|
id
,
rel
|
rel
}
lol
=
los
.
last
(
25
).
reverse
lol
.
each
do
|
key
,
value
|
puts
"
#{
key
}
:
#{
value
}
"
end
lol
# lol.map {|lo| lo[0]}
end
def
frequency_rank
(
lo
,
close_tags
)
itf_sum
=
0
wdf
=
0
# t_size = lo.tags.size == 1 ? 2 : lo.tags.size
# wdf = 1/(Math.log2(t_size)) if lo.tags.size != 0
wdf
=
1
/
(
Math
.
log2
(
lo
.
tags
.
size
)
+
1
)
if
lo
.
tags
.
size
!=
0
lo
.
tags
.
each
do
|
t
|
close_tags
.
each
do
|
cloT
|
if
cloT
[
:id
]
==
t
.
id
itf_sum
+=
cloT
[
:rank
]
*
(
Math
.
log2
(
Tag
.
all
.
size
/
t
.
taggings
.
size
)
+
1
)
end
end
end
return
wdf
*
itf_sum
end
def
cluster_frequency
(
cluster
)
freq_cluster
=
0
cluster
.
each
do
|
t
|
freq_cluster
+=
Tag
.
find
(
t
[
:id
]).
taggings
.
size
end
freq_cluster
end
def
frequency_rank_global
(
lo
,
close_tags
,
freq_cluster
)
freq
=
0
# rel = 0
lo
.
tags
.
each
do
|
t
|
close_tags
.
each
do
|
cloT
|
if
cloT
[
:id
]
==
t
.
id
freq
+=
1
# rel += cloT[:rank]
end
end
end
if
lo
.
tags
.
size
!=
0
wdf
=
(
Math
.
log2
(
freq
+
1
)
/
(
Math
.
log2
(
lo
.
tags
.
size
)
+
1
))
else
wdf
=
0
end
itf
=
Math
.
log2
(
Tag
.
all
.
size
/
freq_cluster
)
+
1
return
wdf
*
itf
#*rel
end
lol
=
find_relevant_results
(
22794
,
tags
)
lol
.
each
do
|
id
,
rank
|
lo
=
LearningObject
.
find
(
id
)
puts
"-----"
p
lo
.
id
.
to_s
+
": "
+
rank
.
to_s
+
" | "
+
lo
.
name
lo
.
tags
.
each
{
|
t
|
print
t
.
name
+
" - "
+
tags
[
t
.
id
][
:rank
].
to_s
+
" | "
}
puts
""
end
end
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment